INFOGRAPHICS: Philippine biotech/GM crops adoption in 2016

INFOGRAPHICS: Philippine biotech/GM crops adoption in 2016

The Philippines was first country in Southeast Asia to plant biotech corn in 2003 after its approval for commercial planting in 2002.  An estimated of 6.03 million hectares of land in the country was planted with biotech corn since then.

This infographics describes the Philippine adoption of biotech/GM crops in 2016.  Despite a temporary decline in biotech/GM corn area in 2015, the Philippines has quickly rebounded production in 2016, when adoption rates for the crop increased due to the enormous benefits enjoyed by Filipino consumers, farmers and their families.

Brief 52 Philippines Infographics

ISAAA Brief 52-2016: Press Release

ISAAA Brief 52-2016: Press Release

Biotech/GM Crops Surge to a New Peak of 185.1 Million Hectares in 2016
Global Area Rebounds from 2015 as Farmers Continue to Adopt Biotech Crops

10674e-green-corn-field-hd-imageBeijing (May 4, 2017) – Today, the International Service for the Acquisition of Agri-biotech Applications (ISAAA) released its annual report showcasing the 110-fold increase in adoption rate of biotech crops globally in just 21 years of commercialization – growing from 1.7 million hectares in 1996 to 185.1 million hectares in 2016. ISAAA’s report, “Global Status of Commercialized Biotech/GM Crops: 2016,” continues to demonstrate the long-standing benefits of biotech crops for farmers in developing and industrialized countries, as well as consumer benefits of recently approved and commercialized varieties.

“Biotech crops have become a vital agricultural resource for farmers around the world because of the immense benefits for improved productivity and profitability, as well as conservation efforts,” said ISAAA Chair of the Board, Paul S. Teng. “With the commercial approvals and plantings of new varieties of biotech potatoes and apples, consumers will begin to enjoy direct benefits of biotechnology with produce that is not likely to spoil or be damaged, which in turn has the potential to substantially reduce food waste and consumer grocery costs.”

Examining other benefits of biotechnology, ISAAA reports that the adoption of biotech crops has reduced CO2 emissions equal to removing approximately 12 million cars from the road annually in recent years; conserved biodiversity by removing 19.4 million hectares of land from agriculture in 2015; and decreased the environmental impact with a 19% reduction in herbicide and insecticide use.1 Additionally, in developing countries, planting biotech crops has helped alleviate hunger by increasing the incomes for 18 million small farmers and their families, bringing improved financial stability to more than 65 million people.

“Biotechnology is one of the tools necessary in helping farmers grow more food on less land,” explained ISAAA Global Coordinator Randy Hautea. “However, the promises of biotech crops can only be unlocked if farmers are able to buy and plant these crops, following a scientific approach to regulatory reviews and approvals.”

As more varieties of biotech crops are approved and commercialized for use by farmers, ISAAA expects to see adoption rates continue to climb and to benefit farmers in developing countries. For example, among African nations where regulatory processes have traditionally created barriers to biotech crop adoption rates, advances are being realized. In 2016, South Africa and Sudan increased the planting of biotech maize, soybean and cotton to 2.66 million hectares from 2.29 million hectares in 2015. Elsewhere on the continent, a new wave of acceptance is emerging as Kenya, Malawi, Nigeria, Ethiopia, Ghana, Nigeria, Swaziland and Uganda make advances in regulatory review and commercial approvals for a variety of biotech crops.

“Even with a long history of regulatory barriers, African farmers continue to adopt biotech crops because of the value they are realizing from the stability and productivity of biotech varieties,” said Hautea. “As more countries move forward with regulatory reviews for crops such as bananas, cowpeas and sorghum, we believe biotech crop plantings will continue to grow in Africa and elsewhere.”

Also in 2016, Brazil increased biotech area of maize, soybean, cotton and canola by a remarkable 11% – maintaining its ranking as the second largest producer of biotech crops after the United States. In Brazil, biotech soybeans account for 32.7 million hectares of the 91.4 million hectares grown worldwide.

For 2016, ISAAA also reports that there were improvements in the commercialization and plantings of biotech fruits and vegetables with direct consumer benefits. These included the commercial approvals of the Innate™ Russet Burbank Gen 2 potatoes that were approved by the U.S. Food and Drug Administration for sale in the United States and the Simplot Gen 1 White Russet™ brand potatoes that were approved by Health Canada for fresh market sale in Canada. These biotech potato varieties have lower levels of asparagine, which reduces the creation of acrylamide during high-heat cooking. Additionally, the first commercially saleable quantities of Arctic® Apples were harvested in 2016, stored over the winter and are projected to be sold in U.S. grocery stores in 2017.
Additional highlights from ISAAA’s 2016 report include:

  • Global area rebounded in 2016 with 185.1 million hectares of biotech crops versus 179. 7 million hectares 2015, when global area for all crops was down, and 181.5 million hectares in 2014.
  • In 2016, 26 countries in total, including 19 developing and 7 industrial countries, grew biotech crops. Developing countries grew 54% of biotech crops, compared to 46% for industrial nations.
  • Eight countries in Asia and the Pacific, including China and India, grew 18.6 million hectare of biotech crops in 2016.
  • 10 countries in Latin America, including Paraguay and Uruguay, grew a combined 80 million hectares of biotech crops in 2016.
  • In 2016, the leading countries growing biotech crops continued to be represented by the United States, Brazil, Argentina, Canada and India. Combined, these five countries planted 91% of the global biotech crop area.
  • Four countries in Europe — Spain, Portugal, Czech Republic  Slovakia — grew more than 136,000 hectares of biotech maize in 2016, an increase of 17% from 2015, reflecting EU’s need for insect resistant maize.
  • Biotech crops with stacked traits accounted for 41% of global area, second only to herbicide tolerance at 47%.
  • Biotech soybean varieties accounted for 50% of global biotech crop area. Based on global area for individual crops, 78% of soybean, 64% of cotton, 26% of maize and 24% of canola planted in the world were biotech varieties.
  • Countries with over 90% adoption of biotech soybean are U.S.A, Brazil, Argentina, Canada, South Africa, and Uruguay; close to or over 90% adoption of biotech maize are USA, Brazil, Argentina, Canada, South Africa, and Uruguay; over 90% of biotech cotton are USA, Argentina, India, China, Pakistan, South Africa, Mexico, Australia, and Myanmar; and with 90% or more of biotech canola are USA and Canada.

For more information or the executive summary of the report, visit www.isaaa.org.

1Brookes and Barfoot, 2017, Forthcoming

For more information, visit ISAAA’s page at http://www.isaaa.org.

TOTE-ALLY BIOTECH: A Bag Print Design Contest

TOTE-ALLY BIOTECH: A Bag Print Design Contest

toteally-biotech

ISAAA and SEARCA BIC are pleased to announce the winners of this year’s Tote-ally biotech Contest. The contest aimed to encourage the students’ creativity through print designs for white katsa bags. Entries featured designs on the theme of this year’s National Biotechnology Week (NBW) “Biotechnology: Partner in National Development.” The Contest was divided into high school and college levels.

The winners received certificates plus corresponding cash prizes of Php10,000, Php7,500, and Php5,000 for the first, second and third place, high school level; and Php17,600, Php12,500, and Php7,500 for the college level. The awarding took place on 25 November during the Closing Ceremony of the NBW in Quezon City.

College level winners

1st Place, College level.
1st PLACE: Nina Kate C. Jingco (4th year, BS Agricultural Biotechnology, UPLB)

 

2nd PLACE: Myka Kathia Lim Barcena (3rd year, BS Biology, UPLB)

 

3rd Place, College level
3RD PLACE: John Albert M. Caraan (4th Year, BS Agricultural Biotechnology, UPLB)

 

High school level winners

1ST PLACE: Abigail Grace R. Tamayo (Grade 10, Divine Light Academy School Molino, Bacoor, Cavite)
1ST PLACE: Abigail Grace R. Tamayo (Grade 10, Divine Light Academy School Molino, Bacoor, Cavite)

 

2nd Place, High School
2ND PLACE: Leedor John A. Abrenica (Grade 11 – Science, Technology, Engineering, and Mathematics (STEM), San Pablo Colleges)

 

3RD PLACE: Vimarie China U. Bidon (Grade 11-Accountancy, Business and Management, Lyceum of the Philippines-Laguna)
3RD PLACE: Vimarie China U. Bidon (Grade 11-Accountancy, Business and Management, Lyceum of the Philippines-Laguna)

 


 ABOUT THE CONTEST

This bag design contest is part of the celebration of the 12th National Biotechnology Week (NBW) and is being organized by the SEARCA Biotechnology Information Center (SEARCA BIC) and the International Service for the Acquisition of Agri-biotech Applications (ISAAA) to involve Filipino students in the promotion and awareness of the benefits and potentials of biotechnology. The contest aims to encourage the students’ creativity through print designs for white katsa bags. Designs should center on this year’s NBW theme “Youth, Agriculture, and Biotechnology.”

I.  Mechanics

  1. The bag design contest is open to all Filipino students classified according to the following levels:
  • High school level Grades 7-12 students
  • College level College students
  1. All interested applicants must submit a 5×5 square inch (with 300 pixel wide resolution) original bag print design in JPEG format.
  1. The theme for the bag design making contest is “Youth, Agriculture, and Biotechnology.”
  1. Designs must only include 2-3 colors. It may also include texts (i.e. one-liners about the theme).
  1. All entries must be submitted on or before 2 November 2016 together with the designer’s full name, age, contact number, school, year level and course, and a scanned copy of his/her school ID. Entries shall be sent to toteally.biotech2016@gmail.com with the subject “Tote-ally biotech.”
  1. Entries will be judged on 4 November 2016. Winners will be notified after judging of entries, and will be invited to the awarding ceremony on 25 November 2016 during the Closing Ceremony of NBW.
  1. Prizes shall be:

     High school level

  • First runner-up: Php10,000
  • Second runner-up: Php7,500
  • Third runner-up: Php5,000

    College level

  • First runner-up: Php17,500
  • Second runner-up: Php12,500
  • Third runner-up: Php7,500
  1. Copyright of the graphic artwork remains with the artist. However, by entering this contest, all contestants grant ISAAA and SEARCA BIC the exclusive use to reproduce, distribute, display, and create derivative works of the entries for knowledge sharing initiatives and science popularization activities without further compensation to the artists.

II.  Criteria for Judging

Entries will be judged using the following criteria:

Message and Content:             30%
Creativity and Presentation:  30%
Originality:                                30%
Relevance to the theme:         10%
Total: 100%