Malawi: Biotechnology could spur Africa’s industrialisation

An industrial development strategy could be built on the back of Africa’s agricultural sector underpinned by the adoption of new and emerging technologies such as biotechnology to support improved yields, value addition and services that feed into the whole agro-processing value chain, a top Common Market for Eastern and Southern Africa (COMESA) official says.

Getachew Belay, a senior biotechnology policy advisor told Zimpapers Syndication recently on the sidelines of a communication training workshop for journalists on biotechnology and biosafety, that the adoption of genetically modified cotton developed using a bacterium Bacillus thuringiensis (Bt) which naturally produces a chemical harmful only to a small fraction of insects such as the bollworm, could increase yields and enhance competitiveness.

He says cotton farmers in Africa suffer huge losses due to pest problems.

“The most destructive of pests is the African bollworm (Helicoverpa armigera), which can cause severe losses of up to 100 percent like we saw on some cotton fields in Salima here in Malawi,” the Comesa biotech policy advisor says.

“In unprotected fields pest damage can be very severe and when you look at Bt cotton crop on trial you can see hope that it’s possible for African farmers to increase their yields and competitiveness of their crop on the market.”

Using Bt cotton developed using bacterium Bacillus thuringiensis, which naturally produces a chemical harmful only to a small fraction of insects such as the bollworm, experts say reduction in pest infestations can increase yields and improve the livelihoods of cotton growers.

The Bt toxin is inserted into cotton, causing cotton, called Bt cotton, to produce this natural insecticide in its tissues.

Biotechnology experts argue that cotton farmers in Zimbabwe, Malawi and most other African countries, can effectively reduce input costs and control damage from bollworms and other insects that frequently damage cotton by adopting Bt cotton.

For several decades, has lagged behind in terms of the industrial dynamism required to boost farmer earnings, employment, economic growth and competitiveness on the global market.

But in recent years, there is a growing realisation of the importance of industrialisation.

In 2016, the UN’s Economic Commission for Africa (UNECA) published a major report on industrialization in Africa where it asserts that structural transformation in Africa’s economies remains the highest priority and industrialization is the top strategy for achieving it in practice.

And, Belay says, biotechnology is one of the major tools for achieving industrialisation.

“I’m convinced that biotechnology has many opportunities to drive Africa’s industrialisation,” he says.

“We have Bt cotton, Bt maize and soya and biotechnology can enhance the competitiveness of our crops and agricultural products especially when it comes to value addition and beneficiation as it was stipulated in our African industrialisation agenda.

“Already we are seeing the benefits of adopting biotech crops in South Africa. Livestock feed sectors in Zambia and even Zimbabwe cannot compete with SA’s GM stock feed which is produced cheaply. We need to adopt this new technology to cut costs.

“Europe relies heavily on GM soya for its livestock feed industry and this has enhanced its competitiveness.”

Africa has a low uptake of biotech food crops due to lack of awareness and stiff resistance, scientists say.

International Service for the Acquisition of Agri-Biotech Applications (ISAAA) AfriCenter director Margaret Karembu told journalists at the workshop that adoption of agricultural biotechnology has lagged behind compared to the rapid rates seen in the medical and health sectors.

“Where are we as Africans? This is the question, we need to think seriously about the good work (on agricultural biotechnology) going on in our labs,” she said. “What is our place in the global biotechnology space? We need reclaim it and improve the livelihoods of our farmers across the continent.”

Karembu said lack of awareness and a constrained regulatory environment had also slowed down the uptake of agricultural biotechnology.

“Lack of awareness of the benefits and the regulatory framework has affected the tide towards the adoption of biotechnology. The victim mentality has been largely to blame for this.

“We think of ourselves as victims of the technology. The fact is that our public institutions and universities have been doing research on biotech crops for years and this has not moved to the commercialization stage,” she says. She says Africa needs to diffuse myths and misconceptions around GMO crops.

“The media has a big role to play in clearing some of the misconceptions about biotechnology and GMOs,” the ISAAA director says.

“When media demonises the science, it becomes difficult to correct the mistakes. There is a lot of unfamiliarity with the technology and having fixed mind sets will not help our struggling farmers.

“The farmers you saw in Salima are poor and they are struggling. Why should we block them from accessing the Bt cotton varieties that can significantly boost their yields and income? Farming should not be for leisure, it’s a business and it should be there to improve the quality of livelihoods of the farmers.

“Biotechnology is one of the tools we can use to first of all improve crop yields and secondly to support Africa’s industrialisation goals for value addition and beneficiation.”

Karembu urged the media to encourage dialogue and to correct misinformation.

“The information we generate should be guided by credible scientific evidence and not unverified ‘Google’ information,” she says. “If you have a headache people just ‘Google’ and ‘Google’ has become the answer. The world is polluted by a lot of unsubstantiated facts. We need to change the narrative and challenge the myth that Africa enjoys being poor – the romanticisation of poverty.”

Stringent and expensive regulatory process in Africa has slowed down uptake of biotechnology crops.

Biotech experts say the regulatory process is burdensome and makes everything unpredictable while in some African countries there is fear of change and challenging of the status quo when it comes to biotechnology.

According to ISAAA, the production of biotech crops increased 110-fold from 1996 with countries now growing the crops on 2,1 billion hectares worldwide.

The global value of the biotech seed market alone was US$15,8 billion in 2016. A total of 26 countries, 19 developing and 7 industrial grew biotech crops.

By 2016, at least four countries in Africa had in the past placed a GM crop on the market. These included Egypt, South Africa, Burkina Faso and Sudan.

But due to some temporary setback in Burkina Faso and Egypt, only South Africa and Sudan planted biotech crops on 2,8 million hectares

South Africa is one of the top 10 countries planting more than one million hectares in 2016 and continued to lead the adoption of biotech crops on the African continent.

Kenya, Malawi and Nigeria have transitioned from research to granting environmental release approvals while six others – Burkina Faso, Ethiopia, Ghana, Nigeria, Swaziland and Uganda made significant progress towards completion of multi-location trials in readiness for considering commercial approval, ISAAA reported.

But the road to the adoption of Bt cotton technologies in Africa still faces stiff resistance.

Supporters of GM crops have to grapple with vocal anti-GMO activists, limited capacity to deal with the processing of GM research applications, bureaucratic delays in approving field trials, mistrust and resistance from key decision makers in Government and limited public awareness of the issues surrounding research and development of GM crops.

In addition, they have to contend with issues related to disease resistance, bottlenecks encountered when co-ordinating with other line ministries, trade-related restrictions, biosafety regulation and the overwhelming influence of multinational companies, Governments and their sidekicks – NGOs. And, despite the threats, biotechnology experts say benefits from the biotech agro-linked industrial development outweigh the threats.

SADC drew up its Industrialisation Strategy and Roadmap which seeks to speed up industrialisation by strengthening the comparative and competitive advantages of the economies of the region.

The strategy which covers the period 2015 – 2063 is anchored on three pillars – industrialisation, competitiveness and regional industrialisation.

The whole industrialisation agenda aims to help SADC member states to achieve high levels of economic growth, competitiveness, incomes and employment.

To access the funds, SADC countries have set up committees made up of government and private sector players to identify priority areas for funding.

At regional level, three areas have been prioritised, namely – agro processing, mining and downstream processing.

“For all this, biotechnology could be a useful tool to drive the region’s industrialisation agenda,” Belay says.

“It’s not a silver bullet, but it’s one of the many tools we can use to drive the continent’s industrialisation strategy. Agriculture is fundamental to Comesa member states in terms of improving food and nutrition security, increasing rural income, employment and contributions to GDP and expert earnings.

“We need to explore ways of enhancing the use of biotechnology to drive industrialisation and improved livelihoods for farmers in Africa.”

Analysts say Africa badly needs increased investment in infrastructure of all kinds – reliable clean energy and water systems, medical clinics, technical colleges, railways, roads, bridges, fiber optic networks, and factories of many kinds.

“Industrialisation can benefit the expansion of intra-African trade by supporting a more diversified export economy,” wrote an economic analyst.

“In particular, the development of rural and food processing industries could help to lift significant numbers from poverty. But, to facilitate trade in goods and services, it is essential to reduce distribution costs by improving and expanding road, rail and other communication infrastructure.” -Zimpapers Syndication

Borlaug’s dream is being realized

Dr. Norman Borlaug, whose scientific research sparked a “green revolution” in agriculture that saved millions of lives, was prescient.

Groundbreaking research that he envisioned nearly 50 years ago is finally coming to fruition as scientists announce new advances in their efforts to develop plants that can create their own sources of fertilizer.

Borlaug alluded to this work in his acceptance speech for the Nobel Peace Prize, which he was awarded in 1970 in recognition of a life dedicated to feeding the world’s hungry population:

In my dream I see green, vigorous, high-yielding fields of wheat, rice, maize, sorghums, and millets, which are obtaining, free of expense, 100 kilograms of nitrogen per hectare from nodule-forming, nitrogen-fixing bacteria. These mutant strains of Rhizobium cerealis were developed in 1990 by a massive mutation breeding program with strains of Rhizobium sp. obtained from roots of legumes and other nodule-bearing plants. This scientific discovery has revolutionized agricultural production for the hundreds of millions of humble farmers throughout the world; for they now receive much of the needed fertilizer for their crops directly from these little wondrous microbes that are taking nitrogen from the air and fixing it without cost in the roots of cereals, from which it is transformed into grain…

Then I wake up and become disillusioned to find that mutation genetics programs are still engaged mostly in such minutiae as putting beards on wheat plants and taking off the hairs.

If we are to capitalize fully on the past biological accomplishments and realize the prospective accomplishments, as exemplified in my dream, there must be far greater investments in research and education in the future than in the past.

Investments have been made into that type of research in recent years, and the results are very promising.

In this video by Robert Hazen of the Alliance for Science, scientists from the Engineering Nitrogen Symbiosis for Africa (ENSA) project discuss how they are using genetic engineering to transfer the nitrogen-fixing capabilities of legumes (peas and beans) into cereal crops. Their work could help small-holder farmers in Africa and elsewhere realize higher yields, without the use of expensive fertilizers. It could also reduce the world’s overall use of chemical nitrogen fertilizers, which contribute substantially to both carbon emissions and environmental pollution.

Harvard University researcher Daniel Nocera is taking a different approach. He and his team presented their work on “a ‘bionic’ leaf that uses bacteria, sunlight, water and air to make fertilizer in the very soil where crops are grown” at an April 3 session of the 253rd National Meeting & Exposition of the American Chemical Society (ACS), according to an ACS press release.

As the release noted:

For this application, Nocera’s team has designed a system in which Xanthobacter bacteria fix hydrogen from the artificial leaf and carbon dioxide from the atmosphere to make a bioplastic that the bacteria store inside themselves as fuel.

“I can then put the bug in the soil because it has already used the sunlight to make the bioplastic,” Nocera says. “Then the bug pulls nitrogen from the air and uses the bioplastic, which is basically stored hydrogen, to drive the fixation cycle to make ammonia for fertilizing crops.”

Nocera’s lab has analyzed the amount of ammonia the system produces. But the real proof is in the radishes. The researchers have used their approach to grow five crop cycles. The vegetables receiving the bionic-leaf-derived fertilizer weigh 150 percent more than the control crops. The next step, Nocera says, is to boost throughput so that one day, farmers in India or sub-Saharan Africa can produce their own fertilizer.

Nocera also shared his work at a press conference that can be viewed here.

Research by ENSA scientists and Nocera is helping to make Borlaug’s dream a reality. Yet advancements in agricultural science continue to meet resistance from groups that oppose the use of modern technology to address food production challenges, just as they did in Borlaug’s time.

Borlaug addressed this dynamic in his acceptance speech, and his words remain true today: 

Some critics have said that the green revolution has created more problems than it has solved. This I cannot accept, for I believe it is far better for mankind to be struggling with new problems caused by abundance rather than with the old problem of famine. 

For the underprivileged billions in the forgotten world, hunger has been a constant companion, and starvation has all too often lurked in the nearby shadows. To millions of these unfortunates, who have long lived in despair, the green revolution seems like a miracle that has generated new hope for the future.

I want to reiterate emphatically that there now are available materials and techniques of great potential value for expanding the green revolution into additional fields of agriculture. But to convert these potential values into actual values requires scientific and organizational leadership. Where are those leaders? Where are the leaders who have the necessary scientific competence, the vision, the common sense, the social consciousness, the qualities of leadership, and the persistent determination to convert the potential benefactions into real benefactions for mankind in general and for the hungry in particular? There are not enough of them now; therefore we must try to identify and develop them in our educational systems and we must utilize them in our campaigns for food production. 

The green revolution is a change in the right direction, but it has not transformed the world into Utopia. None are more keenly aware of its limitations than those who started it and fought for its success. But there has been solid accomplishment, as I have already shown by concrete examples. I have also tried to indicate the various opportunities for capitalizing more fully on the new materials that were produced and the new methods that were devised. And, above all, I cannot emphasize too strongly the fact that further progress depends on intelligent, integrated, and persistent effort by government leaders, statesmen, tradesmen, scientists, educators, and communication agencies, including the press, radio, and television.

-Written by Joan Conrow and published in Cornell University Alliance for Science Global Network website.  See original article link here.