US to Help Pakistan Introduce Genetically-engineered Corn

The Foreign Agricultural Service of the United States Department of Agriculture (USDA) has said that future collaborative projects between the US and Pakistan include using American soybean feed in poultry, fish farming and dairy industries, introducing genetically-engineered maize and working with various government departments to develop uniform food safety standards.

Read more

New Cotton Plants Engineered to Outcompete Weeds

Texas A&M University researchers have developed cotton plants that utilize a form of phosphorus that allows them to outcompete weeds, particularly Palmer amaranth/pigweed, thus offering “a novel alternative” to herbicides that are becoming increasingly ineffective as more weed species become resistant to glyphosate and other widely-used chemistries.

Read more

PhilRice Kicks Off Golden Rice Consultation

The Philippine Rice Research Institute (PhilRice) has began the public consultation on the proposal for the field trial application of genetically modified Golden Rice (GR2E) variety in the Philippines.

Read more

Bt Eggplant Improving Lives in Bangladesh

Ansar Ali earned just 11,000 taka – about $130 U.S. dollars – from eggplant he grew last year in Bangladesh. This year, after planting Bt eggplant, he brought home more than double that amount, 27,000 taka. It’s a life-changing improvement for a subsistence farmer like Ali.

Bt eggplant, or brinjal as it’s known in Bangladesh, is the first genetically engineered food crop to be successfully introduced in South Asia. Bt brinjal is helping some of the world’s poorest farmers to feed their families and communities, improve profits and dramatically reduce pesticide use. That’s according to Tony Shelton, Cornell professor of entomology and director of the Bt brinjal project funded by the United States Agency for International Development (USAID). Shelton and Jahangir Hossain, the country coordinator for the project in Bangladesh, lead the Cornell initiative to get these seeds into the hands of the small-scale, resource-poor farmers who grow a crop consumed daily by millions of Bangladeshis.

Read more

Forty years of data quantifies benefits of Bt corn adoption across multiple crops for the first time

University of Maryland researchers have pulled together forty years of data to quantify the effects of Bt field corn, a highly marketed and successful genetically engineered technology, in a novel and large-scale collaborative study. Other studies have demonstrated the benefits of Bt corn or cotton adoption on pest management for pests like the European corn borer or cotton bollworm in corn or cotton itself, but this is the first study to look at the effects on other offsite crops in North America. By tracking European corn borer populations, this study shows significant decreases in adult moth activity, recommended spraying regimens, and overall crop damage in vegetable crops such as sweet corn, peppers, and green beans. These benefits have never before been documented and showcase Bt crops as a powerful tool to reduce pest populations regionally thereby benefitting other crops in the agricultural landscape. Read more

European court sides with Italian farmer pushing GM crops

BRUSSELS—The European Union court ruled on Wednesday in favor of an Italian activist farmer who has defied his nation’s laws by planting genetically modified (GM) corn.

In Photo: In this August 10, 2010, photo, Giorgio Fidenato holds a raw ear of genetically modified yellow corn at his office in Pordenone, northern Italy. The European Union Court of Justice has ruled on Wednesday in favor of Italian activist farmer Fidenato.

Italy has prosecuted Giorgio Fidenato for cultivating the corn on his land, citing concerns the crops could endanger human health.

But the European Court of Justice ruled on Wednesday that a member-state, such as Italy, does not have the right to ban GM crops, given that there is no scientific reason for doing so. It noted the European Commission in 1998 authorized the use of the specific maize seeds Fidenato planted, finding “no reason to believe that that product would have any adverse effects on human health or theenvironment”.

Fidenato, whose fields lie in Pordenone, northeastern Italy, became persuaded of the benefits of genetically altered crops during a visit to the United States in the 1990s, seeing that they require fewer chemicals than traditional crops and produce higher yields and profits.

But he has faced huge opposition in Italy, where many are fearful that genetically altered foods are less natural than traditional crops and could be dangerous. He has faced both fines from the government and the wrath of anti-GM activists who have destroyed his crops.

The current case dates to 2013, when Italy asked the European Commission to adopt emergency measures prohibiting the planting of the seeds, which are produced by US company Monsanto, on the basis of Italian scientific studies.

But the commission disputed the Italian studies, citing a scientific opinion by the European Food Safety Authority that there was “no new science-based evidence” that the seeds could be dangerous.

The Italian government nonetheless went ahead with a decree prohibiting the cultivation of the corn, and prosecuted Fidenato and other farmers who planted their fields with the corn in defiance.

After the ruling Fidenato expressed satisfaction with the decision, saying he and the other farmers involved in the suit finally feel as if “justice is on our side”.

Image Credits: AP Photo/Paolo Giovannini, File

-Written by Associate Press and published in Business Mirror.  See original article link here.

Pangasinan stakeholders learn about Bt brinjal, affirm support for Bt talong

Pangasinan stakeholders learn about Bt brinjal, affirm support for Bt talong

Farmers, local government constituents, and other key stakeholders in the province of Pangasinan, Philippines expressed their backing for, and willingness to adopt Bt talong(eggplant) by signing a declaration of support for its commercialization during a seminar with key people involved in the development and commercialization of Bangladesh’s Bt brinjal last July 27, 2017 at Pangasinan State University (PSU)-Sta. Maria Campus.

Read more

Farmers return to BT cotton after experiment with desi variety fails

After the experiment with the desi cotton failed to bear fruits, farmers are returning to the BT cotton in the next kharif season.

While there is no taker for the desi cotton seed available with the government agencies, the BT cotton seed is being sold at a premium in the open market, as the seed is not available with the Haryana Seeds Development Corporation.
The farmers say due to high demand, BT cotton varieties were being sold at premium rate by the private seed sellers in the open market. On the other hand, they said, there were no takers for the desi varieties.

“The farmers prefer three varieties of BT cotton— 773, 776 and US 21. Due to high demand, the seed traders have been manipulating the market to create a shortage. Though some unscrupulous elements succeeded in selling these varieties at a premium of Rs 200 per packet above the MRP, the market has stabilised now and these vareties are also available at the MRP of Rs 800,” says a seed trader in Hisar.

Anil Kumar, assistant marketing officer of the Haryana Seeds Development Corporation, says the desi varieties are in low demand this time. “Just 120 packets have been sold till. Last year, I had sold 1,400 packets,” he says, maintaining that the corporation will make some varieties of BT cotton available to the farmers soon.
Farmers say good BT cotton crop in the last kharif season had turned the farmers back to these varieties, as desi cotton was not even able to recover the input cost.

Zile Singh, a farmer from Bir Babran village who sowed desi cotton last time after he lost the BT cotton to the whitefly two years ago, said he was returning to BT cotton this time again.

-Published in The Tribune.  See original article link here.

Scientists engineer sugarcane to produce biodiesel, more sugar for ethanol

A multi-institutional team led by the University of Illinois have proven sugarcane can be genetically engineered to produce oil in its leaves and stems for biodiesel production. Surprisingly, the modified sugarcane plants also produced more sugar, which could be used for ethanol production.

The dual-purpose bioenergy crops are predicted to be more than five times more profitable per acre than soybeans and two times more profitable than corn. More importantly, sugarcane can be grown on marginal land in the Gulf

Coast region that does not support good corn or soybean yields.

“Instead of fields of oil pumps, we envision fields of green plants sustainably producing biofuel in perpetuity on our nation’s soil, particularly marginal soil that is not well suited to food production,” said Stephen Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences. Long leads the research project Plants Engineered to Replace Oil in Sugarcane and Sweet Sorghum (PETROSS) that has pioneered this work at the Carl R. Woese Institute for Genomic Biology at Illinois.
“While fuel prices may be considered low today, we can remember paying more than $4 per gallon not long ago,” Long said. “As it can take 10-15 years for this technology to reach farmers’ fields, we need to develop these solutions to ensure our fuel security today and as long as we need liquid fuels into the future.”

Published in Biocatalysis and Agricultural Biotechnology, this paper analyzes the project’s first genetically modified sugarcane varieties. Using a juicer, the researchers extracted about 90% of the sugar and 60% of the oil from the plant; the juice was fermented to produce ethanol and later treated with organic solvents to recover the oil. The team has patented the method used to separate the oil and sugar.

They recovered 0.5 and 0.8 percent oil from two of the modified sugarcane lines, which is 67% and 167% more oil than unmodified sugarcane, respectively. “The oil composition is comparable to that obtained from other feedstocks like seaweed or algae that are being engineered to produce oil,” said co-author Vijay Singh, Director of the Integrated Bioprocessing Research Laboratory at Illinois.

“We expected that as oil production increased, sugar production would decrease, based on our computer models,” Long said. “However, we found that the plant can produce more oil without loss of sugar production, which means our plants may ultimately be even more productive than we originally anticipated.”

To date, PETROSS has engineered sugarcane with 13 percent oil, 8 percent of which is the oil that can be converted into biodiesel. According to the project’s economic analyses, plants with just 5 percent oil would produce an extra 123 gallons of biodiesel per acre than soybeans and 350 more gallons of ethanol per acre than corn.

-Published in phys.org.  See original article link here.

Australian OGTR approves field trial of GM Potato

The Office of the Gene Technology Regulator (OGTR) in Australia has issued a license to the Queensland University of Technology, allowing the limited and controlled release (field trial) of potato genetically modified (GM) for disease resistance.

The field trial (License Application DIR 150) is authorized to take place at one site of up to 0.1 hectare in Redland City, Queensland, for a period of two years. It will assess the agronomic characteristics and Potato virus X disease response of the GM potato plants under field conditions. The GM potatoes will not be used in human food or animal feed.

The final Risk Assessment and Risk Management Plan (RARMP) concludes that this limited and controlled release poses negligible risks to people and the environment and does not require specific risk treatment measures.

The finalized RARMP, together with a summary of the RARMP, a set of Questions and Answers on this decision and a copy of the license, are available online from the DIR 150 page in the OGTR website.

-Published in ISAAA’s Crop Biotech Update.  See original article link here.