Of Rice and Men: Cultivating the Next Green Revolution

Yogendra Sahoo makes all of his income from cultivating rice in his 5-acre farm in the Jajpur District of Odisha, India. His village is situated a bit above the coast, and every year Sahoo’s crops face rain, water scarcity, and damage from submergence. In 2015, he was the first farmer in his village to grow BINA Dhan 11, a submergence-tolerant rice variety developed by the International Rice Research Institute (IRRI) in Los Baños, Philippines. While most farmers faced a yield of 1,700 kg per acre for different varieties, Sahoo gained 1,200 kg per half an acre.

Read more

Borlaug’s dream is being realized

Dr. Norman Borlaug, whose scientific research sparked a “green revolution” in agriculture that saved millions of lives, was prescient.

Groundbreaking research that he envisioned nearly 50 years ago is finally coming to fruition as scientists announce new advances in their efforts to develop plants that can create their own sources of fertilizer.

Borlaug alluded to this work in his acceptance speech for the Nobel Peace Prize, which he was awarded in 1970 in recognition of a life dedicated to feeding the world’s hungry population:

In my dream I see green, vigorous, high-yielding fields of wheat, rice, maize, sorghums, and millets, which are obtaining, free of expense, 100 kilograms of nitrogen per hectare from nodule-forming, nitrogen-fixing bacteria. These mutant strains of Rhizobium cerealis were developed in 1990 by a massive mutation breeding program with strains of Rhizobium sp. obtained from roots of legumes and other nodule-bearing plants. This scientific discovery has revolutionized agricultural production for the hundreds of millions of humble farmers throughout the world; for they now receive much of the needed fertilizer for their crops directly from these little wondrous microbes that are taking nitrogen from the air and fixing it without cost in the roots of cereals, from which it is transformed into grain…

Then I wake up and become disillusioned to find that mutation genetics programs are still engaged mostly in such minutiae as putting beards on wheat plants and taking off the hairs.

If we are to capitalize fully on the past biological accomplishments and realize the prospective accomplishments, as exemplified in my dream, there must be far greater investments in research and education in the future than in the past.

Investments have been made into that type of research in recent years, and the results are very promising.

In this video by Robert Hazen of the Alliance for Science, scientists from the Engineering Nitrogen Symbiosis for Africa (ENSA) project discuss how they are using genetic engineering to transfer the nitrogen-fixing capabilities of legumes (peas and beans) into cereal crops. Their work could help small-holder farmers in Africa and elsewhere realize higher yields, without the use of expensive fertilizers. It could also reduce the world’s overall use of chemical nitrogen fertilizers, which contribute substantially to both carbon emissions and environmental pollution.

Harvard University researcher Daniel Nocera is taking a different approach. He and his team presented their work on “a ‘bionic’ leaf that uses bacteria, sunlight, water and air to make fertilizer in the very soil where crops are grown” at an April 3 session of the 253rd National Meeting & Exposition of the American Chemical Society (ACS), according to an ACS press release.

As the release noted:

For this application, Nocera’s team has designed a system in which Xanthobacter bacteria fix hydrogen from the artificial leaf and carbon dioxide from the atmosphere to make a bioplastic that the bacteria store inside themselves as fuel.

“I can then put the bug in the soil because it has already used the sunlight to make the bioplastic,” Nocera says. “Then the bug pulls nitrogen from the air and uses the bioplastic, which is basically stored hydrogen, to drive the fixation cycle to make ammonia for fertilizing crops.”

Nocera’s lab has analyzed the amount of ammonia the system produces. But the real proof is in the radishes. The researchers have used their approach to grow five crop cycles. The vegetables receiving the bionic-leaf-derived fertilizer weigh 150 percent more than the control crops. The next step, Nocera says, is to boost throughput so that one day, farmers in India or sub-Saharan Africa can produce their own fertilizer.

Nocera also shared his work at a press conference that can be viewed here.

Research by ENSA scientists and Nocera is helping to make Borlaug’s dream a reality. Yet advancements in agricultural science continue to meet resistance from groups that oppose the use of modern technology to address food production challenges, just as they did in Borlaug’s time.

Borlaug addressed this dynamic in his acceptance speech, and his words remain true today: 

Some critics have said that the green revolution has created more problems than it has solved. This I cannot accept, for I believe it is far better for mankind to be struggling with new problems caused by abundance rather than with the old problem of famine. 

For the underprivileged billions in the forgotten world, hunger has been a constant companion, and starvation has all too often lurked in the nearby shadows. To millions of these unfortunates, who have long lived in despair, the green revolution seems like a miracle that has generated new hope for the future.

I want to reiterate emphatically that there now are available materials and techniques of great potential value for expanding the green revolution into additional fields of agriculture. But to convert these potential values into actual values requires scientific and organizational leadership. Where are those leaders? Where are the leaders who have the necessary scientific competence, the vision, the common sense, the social consciousness, the qualities of leadership, and the persistent determination to convert the potential benefactions into real benefactions for mankind in general and for the hungry in particular? There are not enough of them now; therefore we must try to identify and develop them in our educational systems and we must utilize them in our campaigns for food production. 

The green revolution is a change in the right direction, but it has not transformed the world into Utopia. None are more keenly aware of its limitations than those who started it and fought for its success. But there has been solid accomplishment, as I have already shown by concrete examples. I have also tried to indicate the various opportunities for capitalizing more fully on the new materials that were produced and the new methods that were devised. And, above all, I cannot emphasize too strongly the fact that further progress depends on intelligent, integrated, and persistent effort by government leaders, statesmen, tradesmen, scientists, educators, and communication agencies, including the press, radio, and television.

-Written by Joan Conrow and published in Cornell University Alliance for Science Global Network website.  See original article link here.

Borlaug’s dream is being realized

Dr. Norman Borlaug, whose scientific research sparked a “green revolution” in agriculture that saved millions of lives, was prescient.

Groundbreaking research that he envisioned nearly 50 years ago is finally coming to fruition as scientists announce new advances in their efforts to develop plants that can create their own sources of fertilizer.

Borlaug alluded to this work in his acceptance speech for the Nobel Peace Prize, which he was awarded in 1970 in recognition of a life dedicated to feeding the world’s hungry population:

In my dream I see green, vigorous, high-yielding fields of wheat, rice, maize, sorghums, and millets, which are obtaining, free of expense, 100 kilograms of nitrogen per hectare from nodule-forming, nitrogen-fixing bacteria. These mutant strains of Rhizobium cerealis were developed in 1990 by a massive mutation breeding program with strains of Rhizobium sp. obtained from roots of legumes and other nodule-bearing plants. This scientific discovery has revolutionized agricultural production for the hundreds of millions of humble farmers throughout the world; for they now receive much of the needed fertilizer for their crops directly from these little wondrous microbes that are taking nitrogen from the air and fixing it without cost in the roots of cereals, from which it is transformed into grain…

Then I wake up and become disillusioned to find that mutation genetics programs are still engaged mostly in such minutiae as putting beards on wheat plants and taking off the hairs.

If we are to capitalize fully on the past biological accomplishments and realize the prospective accomplishments, as exemplified in my dream, there must be far greater investments in research and education in the future than in the past.

Investments have been made into that type of research in recent years, and the results are very promising.

In this video by Robert Hazen of the Alliance for Science, scientists from the Engineering Nitrogen Symbiosis for Africa (ENSA) project discuss how they are using genetic engineering to transfer the nitrogen-fixing capabilities of legumes (peas and beans) into cereal crops. Their work could help small-holder farmers in Africa and elsewhere realize higher yields, without the use of expensive fertilizers. It could also reduce the world’s overall use of chemical nitrogen fertilizers, which contribute substantially to both carbon emissions and environmental pollution.

Harvard University researcher Daniel Nocera is taking a different approach. He and his team presented their work on “a ‘bionic’ leaf that uses bacteria, sunlight, water and air to make fertilizer in the very soil where crops are grown” at an April 3 session of the 253rd National Meeting & Exposition of the American Chemical Society (ACS), according to an ACS press release.

As the release noted:

For this application, Nocera’s team has designed a system in which Xanthobacter bacteria fix hydrogen from the artificial leaf and carbon dioxide from the atmosphere to make a bioplastic that the bacteria store inside themselves as fuel.

“I can then put the bug in the soil because it has already used the sunlight to make the bioplastic,” Nocera says. “Then the bug pulls nitrogen from the air and uses the bioplastic, which is basically stored hydrogen, to drive the fixation cycle to make ammonia for fertilizing crops.”

Nocera’s lab has analyzed the amount of ammonia the system produces. But the real proof is in the radishes. The researchers have used their approach to grow five crop cycles. The vegetables receiving the bionic-leaf-derived fertilizer weigh 150 percent more than the control crops. The next step, Nocera says, is to boost throughput so that one day, farmers in India or sub-Saharan Africa can produce their own fertilizer.

Nocera also shared his work at a press conference that can be viewed here.

Research by ENSA scientists and Nocera is helping to make Borlaug’s dream a reality. Yet advancements in agricultural science continue to meet resistance from groups that oppose the use of modern technology to address food production challenges, just as they did in Borlaug’s time.

Borlaug addressed this dynamic in his acceptance speech, and his words remain true today: 

Some critics have said that the green revolution has created more problems than it has solved. This I cannot accept, for I believe it is far better for mankind to be struggling with new problems caused by abundance rather than with the old problem of famine. 

For the underprivileged billions in the forgotten world, hunger has been a constant companion, and starvation has all too often lurked in the nearby shadows. To millions of these unfortunates, who have long lived in despair, the green revolution seems like a miracle that has generated new hope for the future.

I want to reiterate emphatically that there now are available materials and techniques of great potential value for expanding the green revolution into additional fields of agriculture. But to convert these potential values into actual values requires scientific and organizational leadership. Where are those leaders? Where are the leaders who have the necessary scientific competence, the vision, the common sense, the social consciousness, the qualities of leadership, and the persistent determination to convert the potential benefactions into real benefactions for mankind in general and for the hungry in particular? There are not enough of them now; therefore we must try to identify and develop them in our educational systems and we must utilize them in our campaigns for food production. 

The green revolution is a change in the right direction, but it has not transformed the world into Utopia. None are more keenly aware of its limitations than those who started it and fought for its success. But there has been solid accomplishment, as I have already shown by concrete examples. I have also tried to indicate the various opportunities for capitalizing more fully on the new materials that were produced and the new methods that were devised. And, above all, I cannot emphasize too strongly the fact that further progress depends on intelligent, integrated, and persistent effort by government leaders, statesmen, tradesmen, scientists, educators, and communication agencies, including the press, radio, and television.

-Written by Joan Conrow in Cornell Alliance for Science.  See original article link here.

Agricultural biotechnology crucial for feeding world population

Crop production science and innovation led to new technologies that averted a predicted global starvation catastrophe – By Murray McLaughlin

Sarnia – It took until 1800 for the world population to reach one billion people. The second billion was reached in only 130 years (1930), the third billion in less than 30 years (1959), the fourth billion in 15 years (1974) and the fifth billion in only 13 years (1987).

During the 20th century alone, the global population grew from 1.6 billion to over six billion people.

In 1970, there were roughly half as many people in the world as there are today.

In The Population Bomb (1968), Paul Ehrlich writes: “The world, especially the developing world, is rapidly running out of food … in fact the battle to feed humanity is already lost in the sense that we will not be able to prevent large-scale famine in the next decade or so.”

How was this global starvation catastrophe averted?

One element high on the list is innovation. Crop production science and innovation led to new technologies that produce more per acre and more per crop inputs.

Dr. Norman Borlaug was an American agronomist known as “the father of the Green Revolution.” Borlaug developed new varieties of wheat that were planted around the world and had tremendous yield responses. His approach was adopted by other scientists to improve other crops. He was awarded the Nobel Peace Prize in 1970 for his contributions to world peace through increasing food supply. Borlaug is often credited with saving over a billion people from starvation.

With new technologies based on Borlaug’s research, the successes continue. Biotechnology is a new set of tools that enhance crop breeding for new plant traits. Products from biotechnology have shown tremendous improvement since first provided to farmers in 1995. Biotech-bred crops allow farmers to reduce pesticide use, and improve quality and yields with reduced input costs. Biotech-enhanced crops are now grown by 18 million farmers, most of them in developing countries.

In Canada, corn, soybeans and canola are grown using biotechnology (often referred to as genetically-modified organisms or GMOs). All are designed to reduce pesticide use while improving yields. In 1940, corn varieties yielded 25 to 40 bushels per acre. Now, with hybrids and biotechnology, yields are typically 150 to 200 bushels per acre.

GMOs have helped Canadian farmers manage production costs, increase yields and provide safe, nutritious food to the world’s consumers. There is tremendous experience and knowledge about the safety and benefits of GMO crops, based on years of development, testing and production.

The predictions of major hazards, by critics of GMO, have not materialized. GMO crops have played a vital role in improving world agricultural food production per capita. And this will be an ongoing need as the world’s population heads to 10 billion people later this century.

Biotechnology in agriculture production should be embraced the same way we have embraced innovation in medicine, transportation, communication and any number of other sectors. Biotechnology will continue to help reduce global poverty.

We need more people like Borlaug. Through research, science and innovation, he helped ensure we have the necessary tools for a healthy future. Biotechnology will be an important part of that future.

Dr. Murray McLaughlin is an adviser to and former executive director of Bioindustrial Innovation Canada, based in Sarnia, Ont., and a former Saskatchewan deputy minister of agriculture.

3131